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CHAPTER 1: INTRODUCTION 

Scope 

Potential flow methods have been used successfully for 

the last two decades in the preliminary design of partial or 

complete aircraft configurations. Predictions by numerical 

schemes based on potential flow analyses include such aero- 

dynamic characteristics as wing load distributions, surface 

pressure distributions, engine duct flows, and some stability 

derivatives, among others. 

Results of such computations concerning surfaces affect- 

ed by trailing vortex sheets of lifting surfaces are correct 

only for simple configurations where the effects of the loca- 

tion and shape of the vortex sheet are secondary. The shape 

of the vortex sheet is usually assumed to be flat. Realisti- 

cally, however, its configuration changes continuously in the 

downstream direction at least until roll-up of the sheet into 

concentrated vortex cores is complete. The process of roll-up 

is rather complex. Mutual interaction among the elements of 

the sheet depends on their relative positions, however, the 

configuration of the sheet is unknown prior to the complete 

solution including its effect. 

Much of the change in the sheet shape occurs within a 

downstream distance from the generating wing equal to half 

the wingspan. The purpose of this study is to develop a 
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numerical technique of modeling the vortex sheet with a 

deformable surface definition, along which a continuous vor- 

tex strength distribution in the spanwise direction is ap- 

plied, so that by repeatedly modifying its shape, its true 

configuration is approached, in the proximity of its generat- 

ing wing. 

Design problems requiring the inclusion of a realistic 

configuration of the vortex sheet are numerous. 

examples are discussed in the following. 

Some 

Control effectiveness and stability derivatives 

in the early stages of aircraft design, horizontal and 

vertical stabilizers must be sized fairly accurately to en- 

sure aircraft controllability within the flight envelope. 

Downwash and sidewash angles at zero angles of attack and 

sideslip and their rates of change with these angles are pre- 

dicted in practice using empirical relations (reference 11 

and 31, for example) which are not based on general aircraft 

configurations, but rather on crude parameters such as wing 

sweep and dihedral angles, aspect ratio, etc. The real 

governing factor is the wing loading distribution and changes 

in it with Mach Number and attitude with respect to free 

stream direction. This distribution results in a free vor- 

tex sheet extending in theory from the trailing edge of the 

generating wing to an infinite distance downstream of the 

wing. The vorticity is constant streamwise, and varies with 
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chordwise distance. Rol l -up  of the sheet occurs about areas 

of concentrated vorticity called the vortex cores ( 4 ,  23)  

and if in the vicinity of the empennage, such cores will 

affect surface pressure distributions. Two cases are 

r epr e s en t ed . 
Longitudinal stability A s  illustrated in Figure 1, 

the deflected flaps of the aircraft result in a redistribu- 

tion of lift on the wing, and thus a concentrated vortex 

core pair emanates at the outboard edge of the flaps that 

drastically changes the downwash at the horizontal stabilizer. 

Shock induced separation of the outer wing panel in transonic 

aircraft causes a similar effect, which aggravates the insta- 

bility due to the forward displacement of the center of lift 

of a sweptback wing. 

Lateral stability Figure 2 depicts a yawed twin- 

engine aircraft. The dip in the wing lift distribution due 

to the nacelles, caused by inviscid as well as viscous 

effects, leads to a pair of concentrated vortex cores which 

are not symmetric due to yaw. The sidewash angle distribu- 

tion along the stabilizer is altered. In addition, the left 

side of the rear fuselage is closer to center of the inboard 

left vortex than the right side is to the center of the in- 

board right vortex. 

destabilizing yawing moment result. 

A pressure differential and thus a 
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1L.Sideslip angle 

Figure 2 .  Lateral  destabi l izat ion due t o  nace l le  s ide 
forces and complex wing loading 
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Canards 

An effect similar to the above should be investigated 

for canard-configured aircraft. 

canard could affect the lift distribution of the main lift- 

ing wing, and subsequently alter the aerodynamic performance 

of the wing under certain conditions. 

The vorticity from the 

Propellers and helicopters rotors 

Good aerodynamic design for propeller or rotor after- 

bodies (nacelles and other solid boundary surfaces) requires 

simultaneous consideration of all components. The effect of 

these lifting surfaces is felt on other solid bo1mdaries 

through the vortex sheets they shed. Therefore, a more de- 

tailed knowledge of the shape of the vortex sheet and hence 

the induced flow field is necessary. For these cases, a 

quasi-static analysis is required. Such studies are also 

necessary for designs which must result in low aerodynamic 

noise. 

Trailing vortex hazard 

Although this area has been studied extensively recently 

( 7 ,  9, 2 3 ) ,  the present method could be extended to its treat- 

ment, insofar as determining the locations and intensities 

of each of the trailing vortex cores. 

case is primarily in the far downstream region and to promote 

early dissipation of vortex energy. 

The interest in this 

Farther downstream, 
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viscous effects become more pronounced, and since the 

current method is inviscid, vortex merging and dissipation 

must be treated by some other means. Nevertheless, it is 

necessary to establish the initial roll-up which is essen- 

tially inviscid, to enable the treatment of merging and 

dissipation. 

Background 

The present method is based upon earlier work in three 

major areas of computational methods, all of which have 

undergone considerable development in the last two decades. 

A brief historical review is presented in this section. 

Panel methods 

In the early sixties, a computational method was devel- 

oped to predict nonlifting potential flow about arbitrary 

three-dimensional bodies by placing a source distribution on 

the outer surface of the body. The source strength is approx- 

imated by piecewise constant strength over flat "panels" 

which approximate the body surface (15). At about the same 

time, vortex lattice methods were being developed (26)  for 

very thin lifting surfaces, The approach is similar except 

that the camber surface of a lifting wing is represented and 

a discrete horseshoe vortex lattice is used. Later, the two 

techniques were combined to solve arbitrary three-dimensional 

lifting potential flow configuration problems. Examples of 
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work published in this area include those of Rubbert and 

Saaris ( 2 8 ) .  The solution of the flow is obtained by solv- 

ing for the singularity (source and doublet) strength dis- 

tributions on the entire surface. The problem is reduced 

to a set of simultaneous linear equations which can be solved 

non-trivially by imposing Neumann boundary conditions at the 

solid boundaries and the Kutta condition at the lifting sur- 

face trailing edges. The induced effects on the surface or 

elsewhere can then be calculated. More recent developments 

were directed to higher order singularity (source and doublet) 

distributions, in order to improve the predictions and also to 

facilitate surface paneling ( 2 0 ) .  Excessive care for the 

panel arrangement is thus no longer required. 

In the present study, the doublet (or vortex) strength 

distributions are known (obtained by some panel technique) 

for the test wing. The spanwise distribution remains the 

same along the sheet at any streamwise station, downstream 

of the trailing edge. The same type of doublet distribution 

panels are used to determine induced effects to obtain the 

rolled-up shape, except that these panels are constantly 

reshaped and refitted. 

Vortex sheet roll-up 

A comprehensive survey of computational methods for 

lift-generated wakes is given by Rossow ( 2 3 ) .  The vortex 

sheet (or wake) trailing behind the generating wing is divid- 
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ed in three regions: roll-up, plateau, and decay. In this 

study, the roll-up region is the one of interest. 

lem of roll-up was addressed by Betz ( 4 ) ,  then by Westwater 

( 3 2 ) ,  where approximations were introduced to eliminate the 

unnecessary complications of viscous effects. 

have been developed since to overcome the shortcomings using 

artificial means. The major problem was the use of discrete 

vortices to approximate the vortex sheet, rather than a con- 

tinuous distribution as the present method proposes. 

The prob- 

Many techniques 

The interest in obtaining the rolled-up shape of the 

wake was motivated by the advent of large aircraft. 

wake left by a Boeing 747 for example, during climb or 

descent is extremely hazardous for following aircraft and 

extends for several kilometers. Many of the methods develo- 

ped have been intended for finding means of alleviating that 

hazard, such as by modifying the wing loading of the generat- 

ing aircraft to prevent or reduce vortex merging (part of the 

roll-up mechanism for complex wing loading) and thus speed up 

the decay process. 

The 

Parametric bicubic surface representation 

Representation of general curved surfaces was developed 

for computer aided design of aircraft (13) and automobiles 

(5). 

it was found that the Ferguson patches are best suited for 

modeling the vortex sheet surface. 

It is necessary in this study to use curved panels, and 
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General Description of the Proposed Technique 

Since the purpose of this method is to establish the 

shape of the trailing vortex sheet in the vicinity of the 

wing, it is assumed that the strength of the vortex sheet 

is known. Curved and deformable panels of known piecewise 

linear vorticity strength distribution (equivalent to quad- 

ratic doublet distribution) are patched together to simulate 

the vortex sheet, (Figure 3 ) .  The geometry of these panels 

is modeled by using parametric bicubic patches with second 

derivative continuity (C ) across their boundaries. 2 

Initially, the surface is flat. The induced velocity at 

each node in the network is calculated, and some nodes can 

be displaced accordingly, resulting in a new shape, with the 

remaining nodes following. The procedure is repeated with 

the new shape until the entire surface has been relaxed to 

the final shape. ( A  complete description is in Chapter 4 . )  

These induced velocities can include the effects of the 

bound and free doublet panels as well as any solid boundary 

whose consideration is desirable, such as a fuselage, trail- 

ing lifting surface, nacelle, etc. However, the solution for 

the entire flow must be re-computed at each relaxation step. 

In this study, only the doublet panels of the trailing and 

bound vorticity are considered, since the inclusion of other 

bodies is merely a programming and computing effort. In 
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Node 1,l 

u=l ' \ 

Node 1,2 

u and v are the parameters 
in the bicubic expression 
for physical coordinates. 

Figure 4 .  Panel nomenclature 

Boundary 
v=l 
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addition, the roll-up effect on the lift distribution on the 

generating wing itself is assumed to be negligible (30). 

Flow Idealizations Summary 

The following assumptions are made in this study: 

Potential flow The flow is everywhere irrota- 

tional and incompressible except at the boundary surfaces 

(specifically the vortex sheet). 

Symmetry of the generating wing and vortex sheet 

Sideslip could easily be included for yawed configurations. 

Inviscid flow The viscous effects become pro- 

nounced downstream of the area of concern. 

Tip flow No tip flow for the wing is considered, 

since the wing character itself is not of primary concern, 

although its loading near the tip will be somewhat affected. 

Oscillatory and other time-depen- Steady state 

dent flows must be treated quasi-statically if this technique 

is to be used. 

Wing lift distribution The wing lift distribu- 

tion is based on the assumption of a flat trailing vortex 

sheet. 

at least for the purpose of this study. 

noticeable effects are shown which could be included with 

considerably more computational effort. 

As indicated above, the roll-up effect is negligible 

In Rossow ( 2 3 ) ,  
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CHAPTER 11: VORTEX SHEET GEOMETRY 

The vortex sheet is mathematically considered to be a 

surface of finite width extending from the lifting surface 

to infinity, across which there is a jump in the potential 

function 4 .  This jump in 9 is equal to the doublet strength. 

The surface must be represented by a mathematical model which 

provides for at least slope continuity and allows for the 

curled or spiral shape of the rolled-up sheet including infi- 

nite slope tangents, as well as slope constraints at the 

edges of the sheet. 

Parametric Bicubic Representation 

The position vector k(x,y,z) of a point P on the 

surface within one patch is given by the interpolant 

-+ 3 3 - +  x =  c c aka. Uk vR 
k=O k = O  

where u and v are the independent parameters, such that 

O<u, - v<1, - and akR are the polynomial coefficients. Note 

that the vector coefficient zka consists of three elements, 

one for each of the x, y, and z coordinates. The sixteen 

vector coefficients can be determined by specifying x,xu,xv 

and xuv at four corner points or nodes. 

-+ 

- + - +  + 

+ (The subscripts u,v 
refer to the partial derivatives a and a , respectively.) 
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The entire surface is defined by a rectangular array of 

patches. Every four adjacent patches share one common inter- 

ior corner point or interior node. 

every two adjacent patches share one common boundary point or 

Around the periphery, 

boundary -' node except that the corner nodes belong only to 

the corner patches. This array of patches will be referred 

to as a network. An illustration is shown in Figure 5 .  

In Figure 5(a), the geometry for a network of m x n 

patches is shown in the parametric space. A total of 

(m + l)(n + 1) nodes result. The interior nodes are those 

with index i = 2,3, ..., m and j = 2,3, ..., n. The others are 

boundary nodes. Each parameter changes from 0 to 1 within 

a patch, and the coordinates of the parametric space shown, 

ut and v', are the cumulative values of the u, v. The bound- 

aries are lines of constant u or v parameters. Normal to the 

u = constant boundaries, are the tangent vectors tu for each 
node; and normal to the v = constant boundaries, are the 

tangent vectors parallel to the v = constant and 

u = constant lines respectively. These tangent vectors 
V' 

required must be specified according to considerations to be 

discussed in Chapter 4 .  

The transformation in equation (1) takes a point in the 

parametric space to a corresponding point in the physical 

space. 

tangent vectors at the boundary nodes, plus 2(m-l)(n-l) 

It is necessary to determine the remaining 2m + 2n - 4  
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Figure Sa. Patch network geometry in parametric 
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tangent vectors at the interior nodes. This tangent vector 

information, together with node coordinates, is sufficient 

to enable the computation of the 

[ z  ] (in matrix form) according kR 
G k a l  = 

where X 

and Q = 

- 
X xoo xol xvoo vox 

x l o  xll xvlo xvll 

uoo xuol xuvoo xuvol X 

u10 xull xuvlo xuvll X 

sixteen vector coefficients, 

to the matrix relations: 

Q X Q ~  

The matrices for the y and z coordinates are similar (12). 

The letter subscripts indicate partial differentiation, 

and the numerical ones indicate the value of the parameter 

at the patch nodes: the first for u and the second for v. 

For instance, x ax refers to (u=O, v=l). uo1 

Advantages of parametric bicubic patch panels 

The main advantage of a higher order patch geometry for 

an aerodynamic singularity panel resides in its curvature. 

A much larger number of flat panels is required to obtain the 

same error in position. For instance, the cubic representa- 
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tion of a 90" circular arc results in a radial error of - +0.13% 
of the true circle using one curve segment (12). 

the same accuracy with straight segments, eleven would be 

required. 

To obtain 

The cubic requirement is necessary to allow for second 

derivative continuity and inflection points (12) which are 

inherent characteristics of the nature of the vortex sheet. 

In addition, the parametric bicubic is widely used in air- 

craft design, ( 3 ,  18), and its technology is well-established. 

The fact that the vortex sheet surface changes directions 

on itself in the spanwise direction to result in the spiral- 

like shape, renders explicit functions cumbersome to use. 

Implicit functions are equally cumbersome since they would 

require solutions of nonlinear equations at each point. The 

parametric representation eliminates these difficulties, and 

moreover handles vertical slopes without special provisions. 

Computations of the interior tangent vectors 

With reference to Figure 5(b), consider the set of nodes 

(i,j) with a fixed value of i, i t ,  that is, the nodes (i',l), 

(i',2), ..., (i',n+l). The patch edges passing through these 

nodes constitute a 

metric cubic which 

surface is C . In 

whose parameter is 

2 

space curve, which is a composite para- 

must possess the C property, if the entire 

the case of any i t  curve, we obtain a curve 

v. Similarly, another set of curves, j', 

2 
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are obtained 

the equation 

by varying the parameter u. 

for a curve with constant v: 

By differentiating 

-+ x(u) = 3 k  c aku 
k=O 

k- 2 3 

k=2 
+ 
X (U) = 1 k(k-l)akU uu 

(3) 

( 5 )  

The requirement is that at the junction of the ith and (i+l)th 

segments: 
+i x (1) = -f;i+40) 

( 0 )  -+i xu(l> = 

( 0 )  +i -+ i+l x (1) = xuu uu 

Equation ( 6 )  must be satisfied to achieve second order continu- 

Now, as for the patches in Equation (2), the curve 

polynomial coefficients can be written in terms of the 

position and tangent vectors at the nodes: 

gent vectors at the nodes: 

a. = ro 
uo al = r 

a2 = 3(r -r ) - 2rU0 - r 
='2(r -r ) + rUO + ru 

ul 1 0  

a3 0 1  

( 7 )  

Substituting these values in equation ( 5 ) ,  then in the third 
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of Equation 

But, due t o  

23 

the f i r s t  t w o  of Equation (61,  

+i+l +i+l = 3(x1 +i+l -ti +i + *Ul  'XO) x u ~ +  4 x u ~  

Now, 2; r e fe r s  t o  node i, -ti+1 xo = 2; r e fe r s  t o  node i + 1 and 

r e fe r s  t o  node i + 2 .  Thus f o r  nodes 2 ,  3, .. . , m ,  the  x1 
system of equations resu l t s :  

+i+l +i+2 = 3(x + i+2  -x +i ) i = 1 , 2 , .  . . ,m-1 
+ *u si + 4xu 

U 

where i here denotes the i t h  node ra ther  than patch as done 

e a r l i e r .  

-tm+l a r e  known, then the remaining m - 1  tangent I f  xu and xu +1 

vectors a t  the i n t e r i o r  nodes can be found e f f i c i e n t l y  by 

solving the above tridiagonal system by the Thomas' algorithm, 

(1). 

The above i s  repeated f o r  a l l  n+l  curves, then, i n  the 

transverse direct ion,  f o r  a l l  m + l  curves i n  a s imilar  fashion. 

The remaining derivatives zuv, a l so  cal led the cross 

der ivat ives ,  o r  t w i s t  vectors, have zero values along l i n e s  

of minimum o r  maximum surface curvature. For  s implici ty ,  

t h i s  assumption was made and, as indicated by ( 1 2 ) ,  r e su l t s  

i n  a negl igible  amount of error.  
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24  

In  the same reference, it i s  shown tha t  the patches a r e  

continuous i n  C2 across the i r  common boundaries i f  the above 

cuwe continuity i s  achieved. 

Geometric Properties of In t e re s t  

The main purpose of a patch i s  t o  serve as a surface 

posit ion interpolant ,  i . e . ,  given a parameter pa i r  of values,  

a corresponding s e t  of physical coordinates of a point on the 

surface of patch i i s  obtained: 

-b 3 + i  k R  x = (x;y,z)  = c c a k p  v 
k=O R=O 

(9) 

such tha t  0 - < u, v - < 1. 

In addition, a tangent vector t o  the surface a t  the 

point i s  a l i nea r  combination of a p a i r  of tangent vectors ,  
+ + + x = -  ax  and xv = which are  obtained merely by d i f f e ren t i a t -  u au 

+ + 
ing with respect t o  the parameters u o r  v. 

where a i s  a s ca l a r ,  then the vector product xu x xv i s  a 

vector  normal t o  the surface a t  the given point. 

I f  xu # axv, 
+ -b 

Elemental area A s  i l l u s t r a t e d  i n  Figure 6 ,  the 

elemental area dA i s  given by: 

h h h  

where i , j , k  a r e  the uni t  vectors i n  the x ,y ,z  direct ions.  
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Figure 6. Elemental area on a patch 
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Integration of a function over the surface of a patch 

It will be necessary to integrate the induced effects of 

the vorticity which is distributed over the patch area, and 

expressed as a function f of u and v. To evaluate the 

integral 

I =/If (u,v)dA, (10) 
S 

where S is the boundary surface bound in one patch, and dA is 

the elemental area, the relation above is used, thus 

-+ L L  
I = //f(u,v) IxU x -)xvldudv. 

00 
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CHAPTER 111: SINGULARITY SOLUTIONS FOR POTENTIAL FLOW 

Governing Equations and Solutions 

For steady, irrotational motion of an inviscid perfect 

fluid, the velocity perturbation potential function satisfies 

the Prandtl-Glauert equation: 

which is valid for small perturbations, but not for transonic 

flow. 

equation reduces to Laplace's equation: 

For subsonic flow, by replacing x by x(1-M2)-', the 

2 v o = +xx + oyy + o z z  = 0 

This equation also holds for incompressible irrotational flow 

in general. 

Applying Green's theorem, it can be shown (2) that 

Laplace's equation can be converted to the integral equation: 

where: P is a point in the flow field domain D, 

S is the boundary of D, 

n is the unit vector normal to S at a point Q on the 

surface, and 

r is the distance from P to Q. (Refer to Figure 7 . )  

This equation is a singularity solution to Laplace's equation. 
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Figure 7a. Boundary f o r  a closed surface.  

r -&(lower surface) 

Figure 7b. Boundary f o r  an open surface 
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The two  terms i n  the integrand contain 

-1 a i  
4.rrr and an(4.rrr) 

which a r e  the poten t ia l  functions of a point source and a 

doublet, respectively. 

source and doublet strengths a t  point Q, thus equation ( 1 2 )  

can be rewrit ten as:  

The terms $I and 2 represent the 

-f 
where: 5 i s  the posit ion vector of f i e l d  point P ,  

2 i s  the posit ion vector of boundary point Q,  

a(;) source strength d i s t r ibu t ion  on the boundary S ,  

~ ( z )  doublet strength d is t r ibu t ion  on the boundary S .  and 

In panel methods, a and p a r e  approximated by piecewise 

constant,  l i nea r  o r  quadratic d i s t r ibu t ions  over each surface 

f i n i t e  element, cal led a panel, s o  t ha t  f o r  K panels: 

where Si i s  the area of the i t h  panel. 

ing boundary conditions a t  a number of points ( K ) ,  ca l led 

control points ,  selected i n  t h i s  case on the surface,  a s e t  

of simultaneous l i nea r  equations can be obtained and solved 

By properly specify- 

f o r  a i ,ui .  

Usually, source panels a r e  used f o r  closed surfaces and 
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solid boundaries, while doublet panels are used for thin 

lifting surfaces, or for lift generation on solid boundaries 

as well as for barriers such as vortex sheets to render D 

s imply connected . 
In this study, only the doublet solution will be of 

concern, even though source distributions may be included to 

represent solid boundaries and their effect on the roll-up 

process of the vortex sheet. 

Higher Order Doublet Panels 

Unlike the panel method techniques where the objective 

is to solve for the singularity strengths, in the present 

case, the wing lift distribution, a function of the spanwise 

location, is known a p & i a & i .  

given configuration from some panel method computer code, 

experimentally, or by some other means. The problem here is 

to determine the induced effects of the vorticity at various 

key points of the flow field, in order to determine displace- 

ments and thus modify the shape of the vortex sheet. 

doublet strength panels are equivalent to discrete ring vor- 

tices, and a substantial approximation results. In the 

interest of maintaining adequate accuracy without an excessive 

number of panels of constant doublet strength, a bilinear or 

biquadratic doublet distribution is used. 

It could be determined for a 

Constant 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

31 

Bilinear:  

where u and v a r e  the a rc  length i n  

2 2 2  p u v + U8UV2 + 1-I u v + 7  9 

the streamwise and span- 

wise direct ions,  respectively, of the vortex sheet.  

In  the f r e e  portion of the  vortex sheet ,  the  doublet 

s t rength does not vary streamwise, and u i s  a constant there.  

Equivalence of doublet and vortex panels 

The induced veloci ty  a t  a point P due t o  an elemental 

vortex panel of area dS i s  obtained from the Biot-Savart law: 

-+ 
where: r i s  the r e l a t i v e  position vector o f  P with respect 

t o  the panel centroid. 
A 

t i s  a un i t  vector in the direct ion of the v o r t i c i t y .  

y i s  the loca l  vo r t i c i ty  strength.  

The velocity potent ia l  a t  a point P due t o  a doublet 
A 

panel of loca l  strength 1.1 with normal vector n i s :  

h A 

It can be shown tha t  y e t  i s  equivalent t o  n x Vp, (16>, 

thus producing the same potent ia l  function i n  P .  Both 
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approaches are used. In reference (27), the doublet panel 

is preferred because the doublet strength is a scalar. 

However, a biquadratic approximation is used to reduce the 

approximation error, since the first order error term is 

nonexistent, resulting in a more complex panel model. 

Reference (18) suggests the use o f  a bilinear vorticity 

distribution, which is an equivalent approximation to the 

biquadratic doublet panel. 

To assess the approximation error, consider a two- 

dimensional flat vortex sheet as in Figure 8. The induced 

vertical velocity at point x on the sheet segment from xl=O 

to xl=c is given by: 

Expanding y(xl) in Taylors' series about x: 

Substituting in Equation (17): 
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Y 

X 

Figure 8. Vorticity distribution on a two-dimensional 
flat surface along the x-axis 
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If point x is the midpoint of a panel, the first and third 

terms in the square brackets vanish. Thus, in order not to 

exceed second order error, the derivative must be nonzero. 

This is achieved by using a bilinear y distribution. Biquadra- 

tic distribution will not reduce the error. In addition, since 

the bilinear distribution over each panel provides Co (continu- 

ity of value) for y, there will be no concentrated vorticity 

at the panel edges. 

Analysis similar to the above can be used to demonstrate 

dY 

that source panels possess the same behavior, and bilinear 

source distributions would result in a second order error in 

the distance from the control point. 

Derivation of the vortex panel induced velocity for the free 

vor t ici tv 

Considering the geometry of one panel represented by a 

parametric bicubic, the vorticity vectors are tangential to 

lines of constant values of the parameter v, which are space 

curves lying in the vortex sheet, oriented in the general 

streamwise directions as shown in Figure 9. By virtue of 

Helmholtz' first vortex theorem, the strength will not vary 

along these curves. Therefore, each v-line is a vortex 

filament of infinitesimal strength Y(yl)dyl, where y1 is the 

y-coordinate of the generating wing trailing edge. As indi- 

cated earlier, y = y(yl) is known. 

be approximated by a piecewise linear distribution in v 

For simplicity, it will 
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1 
u=l 

Figure 9. Vortex panel configuration for vorticity 
along a v=vl curve 
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between the nodes of the free  vortex shee t ' s  leading edge, 

which coincides with the wing's t r a i l i n g  edge. F o r  the 

panels with index j ,  

a t  any point on such panel whose posi t ion vector g i s  given by 

Eq. (1). The un i t  tangent vector i s  given by 
-t 

(19) U 
A X 
t =- 

-+ 
Ixul 

The v o r t i c i t y  induced velocity a t  a point whose posit ion vector 

i s  d due t o  the v o r t i c i t y  i n  panel i , j  i s  obtained by in tegra t -  

ing Eq. (16 )  using Eq. (11): 

with m x n i s  the number of patches representing the sheet i n  

the stream- and spanwise direct ions,  respectively.  

Derivation of the vortex panel induced veloci ty  f o r  the bound 

v o r t i c i t y  

The formulation i s  ident ica l  t o  t ha t  of the f r e e  v o r t i c i t y  
A 

with the exception tha t  the vector t does not coincide with 

x Equation ( 2 0 )  

i s  thus applicable t o  the component along HU inducing V1. 

The other component along tv induces a veloci ty  vector V2:  

-t 
but i s  a l i nea r  combination of Gu and zv. 

U' 
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a l so ,  

and for the  e n t i r e  sheet consisting of mxn panels: 

di,j T j =  c 
i-1 j-1 

- ~ _ _ _ _  ___- 
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CHAPTER I V :  THE VORTEX SHEET 

Review of Methods of Rollup Prediction 

Betz' Theory 

The e a r l i e s t  attempt t o  analyze the behavior of vortex 

systems i n  a manner applicable t o  the prediction of the  then 

known phenomenon of vortex sheet rol lup was introduced by 

Betz i n  1932 ( 4 ) .  The theory i s  based on the Kutta-Joukowsky 

theorem of vortex l i f t  on a body L ,  about which a c i rcu la t ion  

r ex i s t s :  

L = pvr 

where p i s  the f l u i d  density, and V i s  the l i n e a r  veloci ty  of 

the body r e l a t i v e  t o  the f lu id  perpendicular t o  L. 

a system of such bodies in t e rac t ,  with the bodies becoming 

i n f i n i t e l y  small, and i f  there a r e  no s o l i d  outer boundaries 

t o  exer t  a force,  the net  l i f t  forces and moments of these 

in te rac t ing  vort ices  must be zero. 

a consequence of Helmholz' theorem, the following conservation 

ru les  can be wri t ten t o  r e l a t e  the v o r t i c i t y  i n  the sheet as  

i t  leaves the wing t r a i l i n g  edge, with tha t  of the rolled-up 

sheet:  

Thus, i f  

A s  a consequence, and as  

1. Vorticity:  
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The left-hand side of the  equation r e fe r s  t o  the  

i n i t i a l  f l a t  sheet a t  the wing t r a i l i n g  edge, y 

being any spanwise s t a t ion  and b the wing span. 

The right-hand side r e f e r s  t o  the rolled-up vor- 

tex core,  r being a r a d i a l  posi t ion i n  the vortex 

core from i t s  center and R the core radius. 

2 .  The f i r s t  moment of v o r t i c i t y :  

A s  a consequence, the centroid of the v o r t i c i t y  

located a t  : 

where 

remains a t  a constant spanwise s ta t ion .  The v e r t i c a l  

posi t ion,  however, w i l l  change since there  i s  an 

external force,  the  wing l i f t ,  applied t o  the f l u i d  

elements which resu l t s  i n  a downward motion of the 

centroid . 
3 .  The second moment of v o r t i c i t y  about the centroid: 
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These relations can be used to determine the structure of the 

rolled-up vortex core, that is, the position of the core 

radius r in which a portion of the sheet from a station y to 

the tip is contained. Rossow (25)  shows that 

- 
r = y - y  

Wings with nonsimple loading, such as for flaps extended 

configurations can also be treated using a method developed 

in reference (8). 

Unfortunately, these rules and methods are helpful only 

for fully developed vortex cores, since the time history of 

the rollup cannot be predicted. 

Time History of Rollup 

In 1935, Westwater (32 )  developed a technique for obtain- 

ing the vortex sheet shape by representing it with discrete 

vortices of finite strength and infinite length, and computing 

their positions at successive time increments. These positions 

are equivalent to flow streamlines and the time increments 

correspond to streamwise stations. 

in the Trefftz Plane, that is, the infinite filaments are 

assumed straight and perpendicular to the plane. 

vorticity is ignored and thus the problem is reduced to two- 

dimensions. The induced velocity at a point where any one 

Computations are performed 

The bound 
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vortex filament intersects the Trefftz Plane is the sum of 

the induced velocity vectors of each vortex filament except 

the one in question. The point is moved by an incremental 

displacement equal to the time increment times the induced 

velocity vector. 

process repeated for various streamise stations to obtain 

the time history of the configuration. 

results are given in his paper as well as in (30) and (9) 

for an elliptic loading using 20 filaments for the entire 

span. 

This is done for each filament and the 

Plots of Westwater's 

Discretization seems to lead to several problems. The 

elimination of the filament at which the induced effects are 

being computed is both valid and necessary for a finite or 

discrete system, however, it is a poor representation of a 

continuous system since it creates a "gap" in the sheet. 

Should the number of filaments be increased, the two vortices 

adjacent to the point in question would become too close and 

result in excessive induced velocities. Another problem is 

the increased strength of the tip filaments, compared to the 

remaining ones. Moore has found, as reported by El-Ramly (9), 

that such tip filaments will circle around each other, imply- 

ing that the sheet intersects itself. 

Some of these idealizations were removed by Butter and 

Hancock ( 6 ) .  Three-dimensional effects were considered. A 

line vortex at the quarter chord was introduced to represent 
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bound vorticity, and the trailing vorticity is only semi- 

infinite. A similar effort was conducted by Hackett and 

Evans (14). The discretization effects are the same as 

above. 

Reference (9) notes the work of Neilsen and Schwind, 

where some treatment is done to alleviate the discretization 

effects, namely, when two vortices come too close to each 

other, they are combined into one at their centroid. 

Other researchers whose works are surveyed by El-Ramly 

( 9 ) ,  concentrate on fully rolled up vortex cores, the dis- 

tances for full roll-up and other related parameters not 

directly related to the present study, for both inviscid and 

viscous solutions. The inclusion of viscous effects to pre- 

dict decay of vorticity and the merging of co-rotating cores 

has received considerable attention in the ' 7 0 s  decade when 

the wake hazard of large aircraft became manifest. 

these works are surveyed in (9, 2 3 ) .  Experimental work was 

Again, 

conducted at Iowa State University (reference 19 ) ,  to study 

the merging of vortex cores which are fully developed. 

two separate wings were used to generate a pair of rolled-up 

vortex cores, in order to simulate multiple cores generated 

by a single wing of a large aircraft during climb or approach 

near airports, where the wake hazard is serious. The merging 

There, 

of such cores may be desirable since it can lead to vortex 

cores with diffused vorticity representing a reduced hazard 
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to trailing aircraft. Much of the research (9, 2 4 )  deals 

with the injection of auxiliary vortices which merge with 

the primary tip vortex, as well as methods of assuring 

speedy decay. 

is helpful to know where such cores will be situated upon 

completion of rollup, and the relative magnitudes of their 

strengths. Then, analytical or experimental predictions of 

merging and decay can be simplified. 

For a specific aircraft configuration, it 

The present method in essence is similar to that of 

Butter and Hancock (6), but removes many restricitons which 

lead to over-simplifications. Mainly, a continuous distribu- 

tion of vorticity, truly three-dimensional effects of the 

vortex sheet shape, and a lifting surface are used with the 

help of the building blocks described in Chapters I1 and 111. 

Furthermore, the technique is compatible with the advanced 

aerodynamic paneling techniques in use today, allowing ready 

incorporation of rollup effects, if desired. 

The remainder of this chapter describes the method used 

from the physical and computational standpoint. 

Sheet Vorticity Strength Distribution 

Panel Vorticity 

At any point P on the vortex sheet (see Figure lo), the 

vorticity strength vector can be resolved in two components 
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and y2 = - , which are tangential to the - ar 
y1 - as, as, I L 

u=constant and v=constant curves at point P, respectively. 

I' is the circulation in the sheet at point P, and s1 and s2 

are arc lengths in the direction of y2 and yl, respectively. 

Note that y1 and y2  are not necessarily perpendicular to each 

other. It is necessary to express these vectors in terms of 

their values at the patch nodes, using a bilinear distribu- 

tion as indicated earlier. For the magnitude, 

where, 

are the magnitudes of yl or y2 at nodes (i,j), Yi, j 

U I 1  = 1 - u - v + uv, 
u21 = u - uv , 
U12 = u - uv, and 
u*2 = uv. 

h h 

For the direction, the unit tangent vectors tl, t2 are 

merely the tangents to the v=constant and u=constant curves, 

respectively, so that: 
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Computation of nodal vorticity strengths 

It is assumed here that: (1) the wing spanwise loading 

and (2 )  the chordwise loading distributions at various span 

locations are known. A number of wing stations (span loca- 

tions) are selected, and the values of y1 - dr at these sta- 
tions obtained, where r is the bound vorticity strength at 
the spanwise station y. 

elementary vortex lift theory (Kutta-Joukowsky): 

-aY 

The value of r is obtained from 

1 r 1 '2  vc,c CR 

where C and CQ are the local chord length and lift coeffi- 

cients, respectively. 

Between a pair of consecutive wing stations, j and j+l, 

y1 is approximated by a linear distribution in y: 

The change in bound vorticity strength in this interval, 

- r .  must be equal to the strength of the shed or trail- 
rj+l J 
ing vorticity. 

vorticity theorem: 

As a direct result of Helmholtz' first 
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r .  is distributed in the chordwise direction in a fashion 
J 

similar to that of the load distribution, C - C , where C 

is the pressure coefficient, and the subscripts refer to lower 

or upper surfaces of the wing. Figure 11 depicts typical dis- 

tributions for two categories of airfoils. In addition, the 

following relation holds: 

PR PU P 

l' = 1 y2dx 
j o  

at any wing station j .  

proceeding in the spanwise direction. It is again approxi- 

mated by a piecewise linear distribution (Figure 12), i.e., 

linear over a chord segment from point i to point i+l. 

y2 denotes the component of vorticity 

Between two consecutive stations j ,  j + l ,  a linear blending 

function is used to interpolate, and thus the bilinear dis- 

tribution is used. 

for yl. 

The same interpolation method is used 

C 
Now, since I' = J y2dx, the piecewise interpolant 

j o  
results in a trapezoidal rule summation: 
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Aft loaded airfoil 
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Figure lla. Typical chordwise vortex strength 
distributions 

y 2  

I 
xl=o x2 x3 m+l X X xm- 1 m 

Figure l l b .  Approximation of chordwise loading 
distribution using a linear 
interpolant 
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Figure 12. Typical spanwise l o a d  distribution for a wing 
and piecewise linear approximation of corre- 
sponding shed vorticity 
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Since the distribution is known, the (y2Ii can be expressed 

as multiples of y;, the m a x i m u m  y2 value along the chord, 

then 

m 

i=l 
+ (y2)i]Axi = fey; 1 rj = Y; 1 [ ( t , ~ ~ + ~  

y; = r . / f  
J 

where: 
, m  

i’ - x  i+l Axi = x 

and 

Therefore, the vorticity flow through 

(28) 

(29) 

(30) 

Figure 13, has the circulation 
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Similarly, through panel edge ( 3 ) ,  the vorticity flow has the 

circulation: 

and through panel edge ( 4 ) :  

The following conditions must be noted: 

1. rl + r 3  = r 2  + r 4  

2. y 1  = y 2  = 0 

along the leading edge, and 

3 .  y1 = 0 

( 3 3 )  

( 3 4 )  

( 3 5 )  

( 3 6 )  

( 3 7 )  

along the centerline or plane of symmetry. 

If I' is known at the centerline, and y1 is known at all 

wing stations, which are determined a ptioti along with the 

chordwise loading, then by virtue of Equations 2 8 - 3 0 ,  3 6 ,  

y; at each station, and thus y2  at all nodes can be obtained. 

By virtue of Equations 3 1 - 3 6 ,  the values of y1 at a l l  nodes 

can be obtained too. 

In the free portion of the vortex sheet, the wake y 2  = 0 

everywhere, and the values of y1 remain unchanged from those 

at the trailing edge. 

In the parametric patch representation scheme, all 

variables are expressed in terms of the parameters u and v, 
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which are used to represent the streamwise and spanwise 

directions with proper transformations, respectively. 

As a matter of general interest, in the panel methods 

where the circulation is everywhere unknown, it is customary 

to express the nodal circulation values in terms of a subset 

of values, usually one per spanwise station. 

effects are then added to the source panels representing the 

solid boundaries. 

to the number of unknowns (in this case the y; values) is 

required. These are obtained by specifying boundary con- 

ditions at an equal number of points, for example, where the 

Kutta condition may be enforced. 

nature of vorticity is thus eliminated. 

The induced 

An additional number of equations equal 

The problem of the vector 

Remark on spanwise positioning of nodes 

Parametric bicubic patches of the Ferguson type used in 

However, this study guarantee second derivative continuity. 

the node spacing has an important effect on the quality of 

fit. 

the tangent vectors at the common boundary will be too high 

for the smaller one, causing loops, and resulting in excessive 

surface areas as well as area related integrals over the 

patch. 

If two neighboring patches have widely varying lengths, 

On the other hand, the piecewise linear distribution of 

vorticity dictates another criterion in the selection of nodal 

positions. A linear segment should be terminated before the 
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error in the linear representation is excessive, in order to 

maintain the higher order terms at a minimum. 

Induced Velocities 

It is necessary now to compute the induced velocity due 

to the entire vortex sheet, bound and free portions, at a 

number of points on the free portion, namely, the patch nodes. 

Equation 22 is used. The induced velocities of each panel, 

Equation 21 (a generalization of Equation 20),  are summed for 

all panels representing the vortex sheet. If other singulari- 

ties are present, such as solid boundaries represented by 

source panels or other lifting surfaces represented by vortex 

panels, their induced velocities would be added, too. Source 

panels induced velocities are given by an expression similar 

to Equation 20, except that the vortex strength is replaced 

by source strength, and the tx term is dropped (18). 
A 

The surface integral in those equations is not suitable 

for closed form evaluation, unfortunately, and a numerical 

quadrature is employed (Chapter V). 

Symmetry 

Computations can be greatly reduced by taking advantage 

of the symmetry of the configuration about the y=O plane. 

Letting the physical quantities be expressed for the "left- 

hand half" of the wing in terms of those on the "right-hand 
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half" (primes are used for the left side), then: 

x t  = x 

y '  = -y 

2' = z 

for the vorticity unit vectors: 

A h A h 

tl = xui + yuj + z k 
U 

(39) 
A h h A 

zUk ti = -xui + y U j - 
A A A A 

t 2 = x i  V + yvj + zvk 
h h h A 

ti = -x i + y ~ j  v V =Vk 

for the distance from the elemental vortex to a point in space: 

6x' = 6x = 5 - x 

6 y ' = n + y ;  6 y = Q - y  

Again, is the position vector of the point at which the 

induced velocity is to be computed, 2 is that of the vortex 
element, and subscripts u and v denote partial derivatives 

with respect to these parameters. In Figure 14, these various 

quantities are depicted. 

The displacements in the wake elements are mirror imaged 

on the left side from those computed on the right side; thus, 

the panel symmetry relations (38) hold. 
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Procedure to Compute Rollup 
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Initial conditions and sheet length 

The proposed method is an iterative procedure where an 

initial shape for the free portion of the vortex sheet must 

be assumed. The most logical one would be to extend the trail- 

ing edge in the direction of the free stream velocity, since 

all sections of the sheet has gone through the trailing edge 

as they were being shed from the wing. The sheet is extended 

to a downstream station far enough so that the induced effects 

at the areas of interest (e.g., the empennage) become negli- 

0 Pible. An additional extension is required to promote adequate 

influence for the rollup of original portion. In the latter 

portion, accurate rollup is not of essence, rather, its simula- 

tion of the fact that the vortex sheet is in reality semi- 

infinite in length is the intended purpose (Figure 15). 

The free portion of the sheet is divided in three regions: 

- Region I in which accurate estimates of induced velocities 
are needed. 

- Region I1 is an extension to such distance beyond which the 
rollup effects are negligible everywhere in region I. 

- Region I11 is a further extension to such distance beyond 
which vorticity effects are negligible in region I and 11. 

The various streamwise stations (or spanwise or u=constant 

curves) are those along which the patch corners or nodes are 

located, and are numbered from 1 at the trailing edge to mIII. 
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Computation scheme 

The following steps are performed to obtain an approxima- 

tion of the rolled-up shape of the vortex sheet. 

1. The induced effects of the entire initial sheet at 

the nodes of stations 1 and 2 are computed. 

2. The induced velocities at station 1 nodes are re,- 

quired for computing the downwash and sidewash angles 

at the nodes, such that the resultant velocity 

h h A 

? = (V, + AV )i + AV j + AVz k 
j xi Yi i J J J 

where the V's are the induced velocity components, 

coincides with the tangent vector zu . The magnitude 

of zu should be approximately equal to the arc length 
of a v=constant curve through the particular node on 

station 1 between this node and the corresponding 

one on station 2. Thus: 

j 

(43) 

-+ 3 
where R is approximated by the chord length Ix2j-xljl 

for the node pair in question. 

ments are zero. 

The nodal displace- 

3. At the nodes of station 2, displacements at the nodes 

are computed. 

position along station 2 is: 

The time elapsed from shedding to the 



I 
I 61 
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Figure 16. Boundary condition at wing trailing edge 
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( 4 4 )  

During t h i s  time t ,  the induced ve loc i t i e s  vary 

from those induced a t  s t a t ion  1 t o  those a t  s t a t i o n  

2 .  The average velocity i s  used, so t h a t  the dis-  

placement f o r  each node a t  s t a t i o n  2 i s :  

Thus, the posit ion vectors a r e  obtained f o r  s t a t i o n  

2 nodes: 

The superscript  refers  t o  the computation cycle ,  zero 

being the i n i t i a l  condition. 

tangent vectors a t  the three remaining boundaries i s  

presented l a t e r  i n  t h i s  chapter. 

For  a l l  the remaining s t a t i o n s ,  3 t o  mIII, the incre- 

mental nodal position vectors a r e  s e t  equal t o  those 

The treatment of the 

a t  s t a t ion  2. The reasoning i s  tha t  the vortex sheet 

p a s t  s t a t ion  2 has passed through tha t  curve a t  some 

e a r l i e r  time. 

The second computation cycle i s  s imilar  t o  the f i r s t ,  

except t ha t  now t h e  t h i rd  s t a t ion  ( i=3)  i s  modified 

according t o  the following: 
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AV i s  an incremental veloci ty  a t  s t a t i o n  3 t o  repre- 

sent the acceleration of the p a r t i c l e s  between s t a -  

t ions 2 and 3. Now, the time elapsed i s  

( 4 8 )  

Then, the incremental displacement A; i s :  

For  s t a t ions  4 t o  mIII, the incremental nodal p o s i -  

t ion vectors a r e  equal t o  those of s t a t i o n  3 nodes, 

and so a r e  the tangent vectors a t  the t i p .  

The cycle i s  repeated mII t imes, ( f o r  i values up 

t o  and including mII), t o  obtain the relaxed wake 

shape, so  t ha t  f o r  the kth cycle: 

t i , j  - ( x i , j  - xi-l, J >/v, - 

i = 2 , 3 , 4  ,..., k t l  

Pa r t i c l e  motion due t o  a vortex i s  not l i n e a r .  An 

assumption of l i n e a r i t y  i s  val id  only f o r  small time segments. 

In  order t o  re l ieve  t h i s  r e s t r i c t ion ,  c i r cu la r  motion about 

each elemental v o r t i c i t y  i s  approximated as follows. 

In Figure 1 7 ,  l e t  po in t  P be a f i e l d  point under the 
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Figure 17. Correction for non-linearity of vortex motion 
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influence of a vortex element at point Q. 

between them is p .  

resulting from circular motion about Q. 

position using linear motion approximation which can be 

The distance 

The true updated position of P is P I ,  

P1 is the new 

easily obtained, but is obviously inadequate unless p>>lGV*tl. -b 

Point P2 is obtained by multiplying the vector - 6 by the 
ratio p / I d l  - 61. 
vector g, - d by the ratio I6if-t I 13, - $ 1  , so that ?'I - d 
has the same magnitude as the induced effect 6Q.t. 

moderate angles (up to ~ r / 2 ) ,  PI1 is a reasonable approximation 

of P'. 

Then, PIr is obtained by multiplying the 

For 

Tangent vectors 

The free portion of the vortex sheet is refitted after 

An evaluation of the tangent vectors in each displacement. 

transverse direction to the boundary is required. 

the tangents xu were evaluated at the wing trailing edge. 

The tangents xu at station mIII 

station) are assumed parallel to the free stream velocity. 

In step 2, 
-+ 

+ (the last or pseudo infinity 

Due to symmetry, the tangents -b xv at the syrmnetry plane are 

perpendicular to that plane. 

remaining boundary, the tip vortex, are discussed next. 

The tangent vectors of the 

Tangent vectors at the tip vortex 

First, the direction of the vector is determined as 

follows: By referring to Figure 18a, consider the current 
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c-- v '  Y _I 

/ 
/ / 

T 
z v 

1 

Figure 18a. Exact tangent vector computation 
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/ Approximate 
tangent vector 

Actual 
tang en t ve c t or 

Figure 18b. Approximate tangent vector computation 
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section in the sheet represented by curve C. 

has the position vector : ( y ,  z ) .  The y and z coordinates 

are those of interest since changes in the x-direction are 

assumed negligible. 

board of A whose position vector is (': - dx) : (y-dy, z-dz). 
The parameter v assumes the value v and v - dv at points A 

and B, respectively. Curve C' represents the updated shape 

of the vortex sheet after the next cycle, that is, after a 

time t has elapsed since the particles have moved from the 

upstream station, as in Equation 48.  The induced velocity 

vectors at points A and B are ? and ? - d?, leading to new 

positions A' and B' , with position vectors z' and g' - dz'. 
Thus, the tangent to the curve at A' has the components dy' 

and dz '  , where 

The tip point A 

Point B is a point on curve C just in- 
.+ 

dy' = dy + dV t and 

dz' = dz + dVZt, 
Y 

or the components y; and z;, the length components of the 

tangent vector, where 

y; = v(yv + (V 1 t and Y V  
2' = v(zv + (V&). V 

v is a scale factor which can be obtained by equating the 

'2]' to the arc length of the last segment magnitude [y; 2 + zv 
of the curve, approximated here by its chord length 

[(YA+1 - Y;) 2 + (z;+l - z:) 2 %  I . Therefore, 
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A n 

Note tha t  

can be obtained by d i f fe ren t ia t ing  Equation 22 with respect 

t o  v using Leibniz' rule.  Since the l i m i t s  of in tegra t ion  

a r e  constant, such d i f fe ren t ia t ion  i s  merely performed on 

the integrand. 

The evaluation of Vv would be performed by numerical 

quadrature i n  the same fashion as ? i t s e l f ,  necessi ta t ing 

the near doubling of computations t o  be performed. Thus, an 

approximation i s  adopted as shown i n  Figure 18b. 

i s  selected inboard o f  the t i p  (A)  a t  a parameter value 6v 

l e s s  than t h a t  a t  the t i p .  6v i s  chosen small s o  the chord 

A point ( B )  

B ' A '  represents the tangent vector of the updated curve C '  

a t  the  t i p  A ' .  The position of B '  i s  computed i n  the same 

manner as  the panel nodes. 
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CHAPTER V: 

DESCRIPTION OF COMPUTER PROGRAM 

Introduction 

In this chapter, the computer program to perform the 

computations required for the algorithm described in Chapter 4 

is presented. It is written in FORTRAN 77 in a structured, 

modular form for easy expansion, upgrading, and adaptation to 

an aerodynamic analysis system. 

Major Module Flowchart 

A flowchart showing the major functions is shown in 

Figure 19. Each major function or module is detailed further. 

Three sets of streamwise panel rows are used: 

- The bound vortex panels which are not updated. 
- The updatable panels at which the displacements are 
calculated. 

- The slaved panels which are updated to the last station 
evaluated. (Correspond to those of Region 111. See 

Figure 16.) 

The "updatable row" repetition constitutes the relaxa- 

tion cycle iterations. The entire wake update is repeated 

for the rows of Regions I and I1 which the induced velocities, 

displacements and tangent vectors are re-evaluated. The 
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Figure 19. Major function flowchart 
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results could be output on an external file in the same format 

as the inputs and the program re-run using those for a better 

approximation, although this was not done in the present study. 

As will be shown in Chapter VI, the results obtained from the 

first iteration were quite satisfactory. 

the various details are discussed. 

In the following, 

Surface fit 

This module merely fits parametric cubic curves in the 

u and v directions independently, resulting in the tangent 

vectors at the nodes in both these directions. The twist 

vectors are not obtained, f o r  simplicity, and due to Eheir 

minimal effect on the quality of fit. However, if necessary, 

they should be computed here. The Thomas' algorithm is used 

to solve the set of tridiagonal equations as explained in 

Chapter 11. 

Quadrature points 

This module interpolates the wake surface within a 

patch for a set of 25 points, (see Table below), used for 

quadrature, to obtain the position and tangent vectors, 

x, xu and xv' 

normal vectors xu x xv and their magnitudes, and store these 

data for use by other portions of the program within the 

patch loop. 

nomial coefficients of the patch, given the nodal positions 

and tangents. 

- + +  -+ Then, the latter two are usedto obtain the 
-+ -+ 

This module uses another one to obtain the poly- 

The latter are merely the partial derivatives 
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of the position polynomials, with respect to the parameters 

u and v. 

stretched patch area in order to compensate for the stretch- 

ing, as well as for evaluating the induced velocity integrals. 

These data are used in obtaining the deformed or 

Numerical integration 

The Gaussian quadrature is used. The integrand is 

evaluated at twenty-five points in the interior of each panel 

forming a grid of five points in u-direction along five con- 

stant v curves. The values of u and v are shown in the table 

below. The elemental area is approximated by a weighting 

factor for the integrands aiaj, the values of ai corresponding 

to the grid point is also shown in the Table. The integral 

11 
// f(u,v) dudv 
00 

is approximated by the double summation 

5 5  
C C f(ui, v.) a.a j=1 i=l J 1 j  

Gaussian Quadrature Parameters 

ai ui or vi - i - 
1 0.046910077 0.11846344 
2 0.230765345 0.23931434 
3 0.5 0.28444444 
4 0.769234655 0.23931434 
5 0.953089923 0.11846344 
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Induced ve loc i t i e s  

For  each of the quadrature points ,  the values of the 

v o r t i c i t y  a r e  interpolated,  and the r e l a t i v e  posi t ion vector 

( t o  the node a t  which the velocity i s  being calculated) evalu- 

a ted f o r  one half  of the symmetrical vortex sheet ,  as  well  as 

the other opposite ha l f .  The induced veloci ty  vector induced 

by the current patch a t  the e n t i r e  s e t  of nodes i s  obtained 

by use of the Gaussian quadrature. 

mented fo r  a l l  patches of the network. 

the patch quadrature points a r e  evaluated only once per relaxa- 

t i on  cycle,  t o  reduce the amount of computations. In t h i s  

fashion, the bulk of the computations i s  done i n  the induced 

veloci ty  quadrature. 

These a r e  stored and incre- 

This i s  done so tha t  

Typical run s t a t i s t i c s  

One t e s t  case used 1 5  x 7 panels. The 15 streamwise 

rows comprise 3 bound, 7 slaved, and 5 updatable se t s .  The 

run required 1 0 5  CPU seconds on the Iowa S ta t e  University 

NAS-AS/6 computer, consti tuting most of the th i r t een  dol la r  

charge. Should t h i s  method be used i n  conjunction with a 

poten t ia l  flow paneling program, t w o  i t e r a t i o n s  a r e  t o  be 

s u f f i c i e n t ,  add a small percentage t o  the t o t a l  cost .  
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CHAPTER VI: 

RESULTS AND DISCUSSION 

The results of the computational method of the present 

study are presented in two parts: 

1. A wing planform tested for vortex sheet shape 

visualization is modeled numerically and compared 

with the test results to demonstrate the validity 

of the method. 

2. The span loading of the wing is altered arbitrarily 

to simulate deployed flaps (or stalled outboard 

panel) is modeled and the results presented to 

demonstrate the ability of the system to handle 

complex loadings. 

The first part uses the results of a wind tunnel test con- 

ducted in the Boeing Co. Research Wind Tunnel, which is 

described next. 

The Test Wing 

Description of the test 

The planform of the wing is shown in Figure 20, along 

with the spanwise load distribution, measured experimentally 

using pressure taps at various stations. The load distribu- 

tion used in the numerical model must be a piecewise linear 
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distribution of bound vorticity. 

in the following section. 

This modeling is described 

The flow visualization technique used for this experi- 

ment consisted of injecting steam and liquid nitrogen in the 

airstream at a location upstream of the wing tip. 

gen flow rate is adjusted to bring the air and water vapor 

mixture close to the dew point, so that a small drop in tem- 

perature will cause condensation of the vapor and result in a 

mechanical mixture of air and water droplets. 

will take place if an adiabatic pressure drop occurs, specif- 

ically along the vortex sheet, where the induced velocities 

are locally high. 

and the atmospheric relative humidity is high, and the air 

temperature is very low, liquid nitrogen would be unnecessary. 

Light is applied to a section of the stream past the wing 

The nitro- 

This effect 

If the wind tunnel is of the open type 

trailing edge through a narrow slit so that only the water 

droplets at the particular section are illuminated and can 

be photographed. 

A complete description of this and other methods used 

The for this program can be found in references (21, 29). 

only available photograph from the test was taken at a 

section 1.25 spans behind the wing's trailing edge, and is 

shown in (29) ,  along with computational results discussed 

later. 

as the dashed line in Figure 22f. 

The flow visualization is illustrated in this report 
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Figure 20a. Test  wing planform and twist 
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Figure 20b. Test wing span loading (experimental) 
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Numerical modeling of wing loading 

The necessary inputs t o  the  computer program a re  piece- 

wise l inear  v o r t i c i t i e s  f o r  each panel of the vortex sheet.  

In t h i s  sect ion,  the  bound ( o r  f ixed)  portion thereof i s  

discussed. 

Since no chordwise loading was published i n  ( 2 9 ) ,  a 

d i s t r ibu t ion  s imilar  t o  a f t  loaded a i r f o i l s  was assumed. 

Three chordwise panels a re  used. The leading edge i s  20% of 

the chord and a vo r t i c i ty  d is t r ibu t ion  varying l inear ly  from 

zero t o  a maximum value y; depending on the loca l  spanwise 

load. 

v o r t i c i t y  y;. 

and returns  the v o r t i c i t y  t o  zero l inear ly .  

value of loca l  loading (c*C,), the bound c i rcu la t ion  r can 

be obtained from: 

The middle panel i s  40% of the chord with constant 

The t r a i l i n g  edge panel i s  40% of the chord 

For a given 

1 r = v C * C ~  

where: V i s  the f r ee  stream veloci ty  = 26.84ms-I (as i n  the 

t e s t )  

c i s  the local  chord, meters 

CQ i s  the loca l  l i f t  coeff ic ient .  

I’ i s  a lso equal t o  

+ + 
where: yi i s  the value of y 2  a t  the i t h  chordwise node 

xi i s  the x coordinate of the i t h  chordwise node. 

i 
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Now, y1 = y 4  = 0 ,  y2 - - y3 = y;; x4 = 0 since the trailing 

edge is placed on the y-axis, and xl, x2 and x3 are respec- 

tively 1, 0.8, and 0.4 multiples of the local chord. Thus: 

Due to the linearization of c-CQ, large variations were 

found in the values of the shed vorticity when computed using 

differences. 

cally estimating the slope of the c-CQ curve at the various 

spanwise nodes. 

0.67, 0.82, 0.91, 0.96,:0.996, and 1.016 m, according to the 

considerations discussed in Chapter 4 .  

A good approximation was obtained by graphi- 

These nodes were chosen at y = 0, 0.42, 

The values of the shed vorticity y1 are obtained at 

these stations from: 

The amount of shed vorticity across panel i is 

which is equal in a reduction in bound vorticity r .  
y1 and y2 at each node are computed and shown in Figure 21. 

The bound vorticity is represented by the y; values. 

shed vorticity near the tip was initially calculated to 

satisfy Helmholtz' law (see Figure 13), and is shown by 

point A and the dashed portion of the curve. 

Thus, 

The 

The value was 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

32.2. 

The difference will be discussed later. 

Point B and the solid curve reflect a value of 45. 

Results and discussion of the validated case 

The results of the numerical modeling of the test wing 

described above are presented here. 

show sections of vortex sheet at various streamwise stations: 

Figures 22a through 22f 

0.35, 0.65, 0.95, 1.25, 1.55, and 2.50. The stations calcu- 

lated are 0.35, 0.65, 0.95, 1.25, 1.55, 1.88, 2.25, 2.66, 

3.1, 3.7, 4.5 and 5.5. The last three stations are in 

Region 111, that is, their shape is identical to the one at 

3.lm. The plot at station 2.50 (in Figure 22f) is inter- 

polated between 2.25 and 2.66, and is used to compare with 

the available experimental results. 

First station in the sheet The trailing edge of the 

wing is at x=O, and this is where the first station should 

be. However, the linear distribution of the bound vorticity 

led to unrealistically large localized vorticity at the trail- 

ing edge, especially near the tip, and it was necessary to 

displace the first station of sheet an arbitrary 0.05 m 

downstream. 

consistent with experience (Figure 23). 

The downwash angles thus calculated are more 

Tip vorticity The computed value of tip vorticity 

(point A in Figure 21) is inaccurate due to the linear 

approximations at the tip. The vorticity there is theoreti- 
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c a l l y  i n f i n i t e .  The resu l t s  using the calculated value (A)  

a r e  p lo t ted  using the dashed l i nes .  

the t i p  r e s u l t s  i n  a reversal  of curvature there ,  due t o  the  

reduced v o r t i c i t y  value and other e f f ec t s  discussed below. 

The t i p  v o r t i c i t y  w a s  subsequently increased t o  45 (point B) 

a r b i t r a r i l y ,  and improved r e su l t s  were obtained a t  some of 

the s ta t ions .  However, the shapes thus obtained show a 

f u l l e r  curvature and a be t t e r  "spiral"  shape, consistent with 

i n t u i t i v e  expectations of  the t rue  shape. 

The computed slope a t  

Two a l te rna t ives  were considered. The f i r s t  one was t o  

reduce the spanwise s i z e  of a few panels near the t i p  t o  i m -  

prove the v o r t i c i t y  modeling. 

proximity of the quadrature points (lumped s ingu la r i t i e s )  

and the panel nodes, resul t ing i n  numerical problems. 

of double precision t o  reduce round off e r ror  would have 

helped only s l i gh t ly ,  but would r e s u l t  i n  doubling the compu- 

t a t i o n a l  resource requirements. Ideal ly ,  a closed form 

in t eg ra l ,  a l b e i t  approximate, would probably solve t h i s  

problem. The second was t o  increase t h i s  a rb i t r a ry  t i p  

v o r t i c i t y  t o  l a rger  values, e .g . ,  1 0 0 ,  v io la t ing  Helmholtz' 

f i r s t  law, and s t i l l  resul t ing i n  numerical problems s imilar  

t o  those above, now due t o  the large value of v o r t i c i t y .  

The r e s u l t  w a s  an excessive 

Usage 

Slope a t  the t i p  The qual i ty  of the solut ion w a s  

found t o  be extremely sensi t ive t o  t h i s  var iable .  

i t  w a s  planned t o  use the chord of the t i p  panel t o  approxi- 

Originally,  
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mate the tangent a t  the l a s t  node, and i n  f a c t ,  t h i s  w a s  used 

i n  the preliminary t e s t ing  of the method. However, f l a t t e n -  

ing and inf lec t ions  i n  the curve near the t i p  resu l ted ,  as  

expected. 

angle between the chords of the t w o  adjacent panels a t  the 

t i p ,  and estimate the magnitude using a heu r i s t i c  formula. 

While t h i s  w a s  successful i n  some cases ,  i t  f a i l e d  i n  m o s t ,  

The second attempt w a s  t o  use the b isec tor  of the 

simply because i t  i s  d i f f i c u l t  t o  program logic  t o  account 

f o r  a l l  p o s s i b i l i t i e s  of angle combinations, or ientat ions and 

r e l a t i v e  node posit ions.  In  addition, t h i s  method i s  unrelat-  

ed t o  the physical aspects of the problem. The method 

described i n  Chapter 4 w a s  f i n a l l y  resorted t o .  

mation used i s  essent ia l ly  an improvement of the t i p  chord 

The approxi- 

approach. A point i s  chosen within the t i p  panel t o  produce, 

along with the t i p  node i n  a short  chord t o  approximate the 

required tangent. While some numerical problems a r e  overcome 

(namely, eliminating the need f o r  a very small t i p  panel) ,  

others resulted.  The computed induced veloci ty  a t  t ha t  point 

i s  dependent on i t s  position r e l a t i v e  t o  the quadrature 

points.  Thus, i t s  location w a s  varied u n t i l  the l e a s t  amount 

of in f lec t ions  i n  the curves were obtained. It  seems t h a t  

the induced veloci ty  there is  s t i l l  somewhat excessive. It 

a l so  seems tha t  the exact value of the slope (a l so  described 

i n  Chapter 4 )  should be used f o r  b e t t e r  r e s u l t s ,  t ha t  i s ,  t o  

reduce the inf lec t ions  o r  eliminate them. 
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Comparison with test This is done in Figure 22f. 

The dashed line labelled "Vapor condensation" is at the 

center of the bands of illuminated water particles as they 

appear in the photograph in reference (29), Figure 5.4. The 

circular area labelled Vortex core" appears as a dark circle 

in the photograph. This is the innermost part of the rolled- 

up sheet, where viscous effects are most prominent. 

computed contour is shown with the solid line. 

tion was done starting with a flat sheet, and while itera- 

tions could have been performed to "relax" the shape to one 

where the pressure differential across the sheet vanishes, 

the closeness of the computed and experimental results sug- 

gested this was unnecessary for the purpose of this study, 

which is to test the ability of this modeling to produce 

realistic predictions of the vortex sheet. In iheir paper, 

Butter and Hancock ( 6 )  show the results of their relaxation 

scheme. There, the second cycle's results are close to 

those of the initial cycle, except in the two stations immedi- 

ately behind the wing, where the rolled up sheet effects are 

not included for the first, and only slightly included for 

the second. 

graph of the flow visualization is for a station far enough 

downstream, that viscous effects have had a considerable 

effect on the shaping of the sheet. 

that, if the tip condition were modeled more accurately, a 

The 

The computa- 

It must be noted that the only available photo- 

Furthermore, it appears 
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better approximation would have resulted. 

Another consideration is that the test wing has a 

trapezoidal planform with considerable tip flow, not account- 

ed for in the mathematical model. 

Comparison with other computational methods Reference 

( 2 9 )  shows predictions of the sheet shape at the same station, 

using a very large number of discrete vortex filaments, both 

inviscid and viscous, the results show the spiral shape is 

contained between 96% and 101% of the half span. In other 

words, the roll-up fonn is t oo  tight, compared with experi- 

ment. The calculations of these methods iire based on the 

Trefftz plane scheme (two-dimensional). The results of the 

current methods are much more realistic. 

The Wing with Deployed Flaps 

In order to assess the behavior of the present method in 

predicting vortex sheet rollup resulting from complex wing 

loading, such as for deployed partial span flaps and partially 

stalled wings, the loading of the test wing was altered by 

increasing the lift in the inboard half, as shown in Figure 

2 4 ,  by the bound vorticity curve. A slight dip in lift was 

included just outboard of the flaps to render the loading 

more realistic. The remainder is unchanged. 
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Numerical modeling 

The procedure is identical to the one just explained, 

with the exception of the selection of the number of spanwise 

nodes. 

vorticity is high, not only to model it accurately, but to 

improve the surface fit, as will become evident in the dis- 

They must be increased where the rates of change in 

cussion. Twelve spanwise patches were used here, as shown 

in Figure 2 4 .  

Results and discussion 

The results are shown in Figures 25a through 25e, for 

sections of the sheet at stations 0.35, 0.65, 0.95, 1.25, and 

1.88. All but the last are very realistic, even though no 

experimental results are available for comparison. 

tion is consistent up to 1.25 half spans downstream. 

1.88 m, the vortex sheet crosses itself. 

as follows: The nodal displacements are calculated properly 

for that station, however, the surface fit is done according 

to a criterion which is not necessarily consistent with the 

physics of the problem. 

required in the fit, and this poses constraints on the pdly- 

nomial degrees of freedom. Thus, the resulting solid curve 

in Figure 25e is merely a C2 interpolant of the node points 

shown. 

constraint to impose is the slope of the tangents at the 

nodes, with values computed from the induced velocity gradient 

The solu- 

At 

This is interpreted 

Second derivative continuity is 

From a physical standpoint, however, a more realistic 
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along the curve, discussed in Chapter 4 for the tip slope. 

If such a criterion were used at all nodes, instead of the 

tip only, the result may be similar to the dashed line in 

Figure 25e. Another way to achieve this is to increase the 

number of nodes to improve the fit, but at an increased 

computational cost. 
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CHAPTER VII: 

CONCLUSIONS AND RECOMMENDATIONS 

The objective of this study was to test the concept of 

using parametric bicubic patch surface definitions with bi- 

linear vorticity or biquadratic doublet distributions, to 

model the vortex sheet and predict its shape numerically in 

the vicinity of the wing. 

This choice stems from the need for continuity in these 

physical quantities, which is the way they occur in nature. 

To a full extent, this is true of the geometric representa- 

tion, and to a lesser extent, it is true of the singularity 

distribution. For the purpose of computing induced veloci- 

ties, it was shown that higher order of vorticity would not 

improve the truncation error. For the purpose of modeling 

the tip vorticity, the bilinear distribution, although satis- 

factory, gave rise to some difficulty. The bicubic geometric 

surface representation proved very suitable for curved sur- 

faces such as the rolled-up vortex sheet, with the surface 

fit scheme failing only for complex wings, far downstream 

beyond the region of concern. 

The author's opinion is that these difficulties can be 

surmounted by using the exact value of the velocity gradient 

at all the nodes of the sheet to obtain the tangent vectors 

in the spanwise direction. Therefore, it is suggested that 
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this effort be undertaken in a follow-up study. The versa- 

tility of the model may also be improved by using a more 

appropriate integration scheme for handling singularities. 

Despite these approximations, the results shown in Chapter VI 

amply demonstrate the quality of the approach compared to 

some of the schemes currently used, based on discrete, piece- 

wise linear vortex filaments. For example, the Trefftz plane 

method ( 3 2 )  results in very tight spiral ( 2 9 ) ,  and the method 

used by Hackett and Evans (14), which uses finite upstream 

filament lengths, displays excessive sensitivity to the posi- 

tioning of the filaments. The present method is sensitive to 

node positioning only near the tip and trailng edge, and the 

author's opinion is that it can be alleviated by the above 

suggested refinements. 

This method should be incorporated in a potential flow 

computational system for a variety of reasons. 

1. It is certain to improve the uccutrucy o b  p t e d i c t i n g  

t h e  wing l o a d i n g ,  following one iteration, despite 

the fact that tip flow is not included. In most 

available programs, the Kutta condition is imposed 

on the assumption that the streamlines at the trail- 

ing edge coincide with some arbitrary direction, for 

example, the bisector of the trailing edge angle. 

This may be acceptable as a first estimate, giving 

downwash angles at the trailing edge to be used for 
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streamline directions f o r  the next and probably l a s t  

relaxation cycle. 

Farther from the wing, t h a t  i s ,  near a f t  fuselage 

and empennage surfaces, the e f f e c t  of rol lup i s  

necessary i n  many cases i n  attempts t o  ptedict 

sXubilitg dehivuXives, both longitudinal and 

l a t e r a l .  Lateral  conditions w i l l  necess i ta te  

modeling of both halves of the a i r c r a f t ,  which i s  

done i n  potent ia l  flow solutions involving side- 

s l i p ,  yaw o r  r o l l  ra tes .  A s y s t e m a X i c ,  tigutuus 

and taXiona& evuluatiun of the configuration, 

especially i f  unique and o r ig ina l ,  w i l l  be obtained, 

instead of attempts of i n t u i t i v e l y  adapting ex is t ing  

data which a r e  not necessar i ly  va l id ,  po ten t ia l ly  

leading t o  inadequate design t o  be discovered only 

a f t e r  expensive wind tunnel tes t ing .  

AddiXionat compuXaXional e d d u t X  is t r e l a t i v e l y  small, 

except i n  the cases requiring re-evaluation of the 

e n t i r e  potent ia l  flow solution, as described i n  1 

above. The solutions i n  2 w i l l  not require reevalua- 

t ion  of the en t i r e  flow, once the wing loading has 

been determined, i n  general. 

The usage of the parametric bicubic patch i n  the 

manner of the present study suggests i t  can be used 

t o  represent s o l i d  boundaries as well ,  f o r  the 
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purpose of solving for the singularity (source) 

strength distributions, and hence, pressure dis- 

tributions. Fewer panels will be needed than with 

flat panels, and the nodal spacing is not very 

critical due to bilinear singularities. This fea- 

ture is extremely valuable for preliminary designers, 

and its usage is being introduced (18). The cam- 

p a a X b i l i t y  of such a system with the techniques of 

the present study is evident, and incorporation of 

this wake relaxation scheme can be readily imple- 

mented. 

Additional experimental verification is desirable, 

especially for the flaps deployed case, as well as a yawed 

configuration. These seem to be natural extensions of the 

work presented here, along with the suggested refinements 

discussed earlier in this chapter and in Chapter VI. 
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